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Overview

1 Modeling of Random-Access Networks

2 A Unified Analysis of Throughput, Delay and Stability

3 Application to IEEE 802.11 DCF Networks
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Multiple Access

Multiple nodes transmit to a common receiver: How to share the channel?
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Multiple Access

Multiple nodes transmit to a common receiver: How to share the channel?

Centralized Access: A central controller performs resource
allocation/optimization.

Random Access: Each node determines when/how to access in a
distributed manner.
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Random Access

Various assumptions on the receiver have been made, which can be
broadly divided into three categories.

Collision: When more than one node transmit their packets
simultaneously, a collision occurs and none of them can be
successfully decoded. A packet transmission is successful only if there
are no concurrent transmissions.

Capture: Each node’s packet is decoded independently by treating
others’ as background noise. A packet can be successfully decoded as
long as its received signal-to-interference-plus-noise ratio (SINR) is
above a certain threshold.

Joint-decoding : Multiple nodes’ packets are jointly decoded.
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Protocol Design: Three Key Questions

For each node:

When to start a transmission?

When to end a transmission?

How to resolve collisions?
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Question 1: When to Start a Transmission?

Transmit if packets are awaiting in the queue.

— Aloha [Abramson’1970]

A more “polite” solution: Transmit if packets are awaiting in the
queue and the channel is sensed idle.

— Carrier Sense Multiple Access (CSMA) [Kleinrock&Tobagi’1975]
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Question 2: When to End a Transmission?

Stop when a packet transmission is completed.

A “smarter” solution: Stop if a collision is sensed. Otherwise stop
when a packet transmission is completed.

— It requires full duplex.
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Question 3: How to Resolve Collisions?

Backoff

Probability-based: Retransmit with a certain probability at each time
slot.

Window-based: Choose a random value from a window and count
down. Retransmit when the counter is zero.

Example — Exponential Backoff [Metcalfe&Boggs’1976]: For each
node, the transmission probability/window size at time slot t is
exponentially decreased/increased according to the number of
collisions the node has experienced by time slot t.
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Performance Analysis: Three Key Questions

How to model a random-access network?

How to evaluate the performance of a random-access network?

How to optimize the performance of a random-access network?
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Question 1: How to Model a Random-access Network?

…...

…...

…...

…...

A random-access network can be regarded as a
multi-queue-single-server system.

Numerous models have been proposed, which can be broadly divided
into two categories: channel-centric and node-centric.
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Question 1: How to Model a Random-access Network?

Channel-centric modeling: to characterize the aggregate channel.

…...

Idle
Successful 

Transmission
CollisionIdle tIdle

— [Abramson’1970]: The aggregate traffic of Aloha at each time slot is
modeled as a Poisson random variable with parameter G .

— [Kleinrock&Tobagi’1975]: The aggregate channel of CSMA is
modeled as an alternating renewal process.

— [Hajek&Loon’1982], [Tan&Tsai’1996], [Yang&Yum’2003],
[MacKenzie&O’Farrell’2010], [Wong,Yin&Lee’2013]...
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Question 1: How to Model a Random-access Network?

Node-centric modeling: to characterize the behavior of each node.

— [Tsybakov’1979]: A two-node buffered Aloha network is modeled as a
2-dimensional random walk.

— [Rao&Ephremides’1988], [Anantharam’1991], [Szpankowski’1994]...:
Generalization to an n-node buffered Aloha network leads to prohibitively
high complexity.

— [Takagi&Kleinrock’1985], [Takin,Takahashi&Hasegawa’1988],
[Wan&Sheikh’2000]...: Approximations are developed to simplify the
analysis.
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Question 2: How to Evaluate the Performance of a

Random-access Network?

Network Throughput: the time fraction that an effective output is
produced.

Delay
1) Queueing delay (waiting time): the time interval from the packet’s
arrival to the instant that it becomes the head-of-line (HOL) packet;
2) Access delay (service time): the time interval from the instant that
it becomes the HOL packet to its successful transmission.

Stability
1) The network is stable if the network throughput is equal to the
aggregate input rate.
2) The network is stable if the mean access/queueing delay is finite.
...
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Question 3: How to Optimize the Performance of a

Random-access Network?

Observations:

Performance of random-access networks crucially depends on backoff
parameters.

A random-access network may suffer from low throughput and large
delay jitter if the backoff parameters are improperly selected.

To stabilize the network, the transmission probability of each node
should be adaptively adjusted.
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Three Open Questions to be Answered

Which modeling methodology, channel-centric or node-centric, is
better?

Is there a unified framework for throughput, delay and stability
analysis?

How to tune the backoff parameters to optimize the performance?
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Modeling of Random-Access Networks
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Modeling I: Channel-Centric

…...

Idle
Successful 

Transmission
CollisionIdle tIdle

The aggregate channel has three states: Idle (I), Successful
Transmission (S) and Collision (C).

Key Assumption: The aggregate traffic, i.e., the total number of
attempts generated by both fresh and backlogged packets, of each
time slot can be modeled a Poisson random variable with rate G .
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State Characterization of Aggregate Channel

The channel state transition can be modeled as a discrete-time
Markov renewal process (Xc ,Vc) = {(X c

j ,V
c
j ), j = 0, 1, . . . }.

The embedded Markov chain Xc = {X c
j }:

PS

S I

PS

C
PI

PCPC
PS

PI

PI

PC
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Network Throughput

The limiting state probabilities of the Markov renewal process
(Xc ,Vc) are given by:

π̃i =
πi · τi

∑

j∈{I ,S,C} πj · τj
, i ∈ {I ,S ,C}.

τi : holding time at State i , i ∈ {I,S,C}.
πi : limiting state probability of the embedded Markov chain at State
i , i ∈ {I,S,C}.

Network Throughput: the time fraction that an effective output is
produced.

λ̂out =
1

τS
· π̃S =

πS
∑

j∈{I ,S,C} πj · τj

Assume that a packet transmission lasts for 1 time slot.
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Network Throughput without Sensing

1 1 1 t…...

S CI

τS = τI = τC = 1 time slot

πS = PS = Ge−G , πI = PI = e−G , πC = PC = 1− e−G − Ge−G .

Network throughput without sensing: λ̂Aloha
out = Ge−G .

Maximum network throughput: λ̂Aloha
max = e−1, achieved at G = 1.
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Network Throughput with Sensing

t
1 xaa

…...

CSI

a a

a (mini-slot length): the ratio of the propagation delay required by
each node for sensing the channel to the packet transmission time.
x : how many mini-slots for each node to detect the collision and
abort the ongoing transmission.

τS = 1 + a time slot, τI = a time slot, τC = (x + 1)a time slot;
πS = PS = aGe−aG , πI = PI = e−aG , πC = PC = 1−e−aG−aGe−aG .

Network throughput: λ̂CSMA
out = Ge−aG

x+1−xe−aG+(1/a−x)aGe−aG .

Maximum network throughput: λ̂CSMA
max =

−W0

(

−
1

e(1+1/x)

)

xa−(1−xa)W0

(

−
1

e(1+1/x)

) ,

achieved at G = 1
a

(

1 +W0

(

− 1
e(1+1/x)

))

.
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Maximum Network Throughput
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λ̂CSMA
max increases as the normalized propagation delay a or the

collision-detection time x decreases.

λ̂CSMA
max > λ̂Aloha

max if a < e
1
e − 1 ≈ 0.445.
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Summary of Channel-Centric Modeling

Throughput analysis can be performed by modeling the state
transition process of the aggregate channel.

The maximum network throughput is independent of backoff
parameters. It is solely determined by the holding time of the channel
at State S (Successful Transmission), State I (Idle) and State C
(Collision).

Questions:
1 What if the aggregate traffic cannot be approximated as a Poisson

random variable?

2 How to achieve the maximum network throughput?

3 how to characterize the per-node performance such as delay?
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Modeling II: Node-Centric

…
...

…...

…...

…...

An n-node buffered random-access network can be modeled as an
n-queue-single-server system.

Key Assumption: Each node’s queue can be regarded as an
independent queueing system with identically distributed service time
if the number of nodes n is large.
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State Characterization of Head-of-Line (HOL) Packet

The state transition of each HOL packet can be modeled as a
discrete-time Markov renewal process
(Xh,Vh) = {(X h

j ,V
h
j ), j = 0, 1, . . . }.

The embedded Markov chain Xh = {X h
j }:

Without Sensing

R0 R1 RK…...1-pt RK-1
1-pt

1-pt

1-pt

pt

pt
pt

pt

1-pt

K : cutoff phase. The HOL packet stays at State RK if the number of
collisions exceeds K .
pt : probability of successful transmission of HOL packets at time slot
t.Lin Dai (City University of Hong Kong) Toward a Unified Theory of Random Access January 17, 2014 26 / 74



State Characterization of Head-of-Line (HOL) Packet

The state transition of each HOL packet can be modeled as a
discrete-time Markov renewal process
(Xh,Vh) = {(X h

j ,V
h
j ), j = 0, 1, . . . }.

The embedded Markov chain Xh = {X h
j }:

With Sensing

R0 R1 RK…...

1
1
1-pt

pt
T

F0 F1

1 1

RK-1

FK…... FK-1

1
1-pt 1-pt 1-pt

pt

pt
pt

The states of {X h
j } are divided into three categories: 1) waiting to

request (State Ri , i = 0, . . . ,K ), 2) collision (State Fi , i = 0, . . . ,K )
and 3) successful transmission (State T).
pt : probability of successful transmission of HOL packets at mini-slot
t given that the channel is idle at t − 1.Lin Dai (City University of Hong Kong) Toward a Unified Theory of Random Access January 17, 2014 27 / 74



Dynamic Trajectory of pt

For each HOL packet, its transmission is successful if and only if all
the other n − 1 nodes are either idle with an empty queue, or, with a
State-Ri HOL packet but not requesting any transmission.

Without Sensing

pt+1 =

{

1− ρt +

K
∑

i=1

ρt π̃Ri ,t(1− qi)

}n−1

.

With Sensing

pt+1 =

{

1− ρt + ρt ·
∑K

i=0 π̃Ri ,t · (1− qi)

1− ρt + ρt ·
∑K

i=0 π̃Ri ,t

}n−1

.

qi : Transmission probability of a State-Ri HOL packet.
ρt : Offered load at time slot t.
πi ,t : Probability that the HOL packet stays at State Ri at time slot t.

Approximation: ρt ≈ ρ(pt) and π̃Ri ,t ≈ π̃Ri
(pt), i = 0, . . . ,K .
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Bi-stable Property

pt

pt+1 1

ˆ(1 )

ˆ
exp

ˆ( 1)ˆexp

t

t
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p xa
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!

pLpS

x

x

with sensing

without sensing

If pt ≥ pS at any t and limt→∞ ρt = ρ ≤ 1: limt→∞ pt → pL.

pL and pS are roots of the fixed-point equation:

p =







exp
{

λ̂
p

}

without sensing

exp
{

xaλ̂
1−(1−xa)λ̂

}

· exp
{

− (x+1)aλ̂

1−(1−xa)λ̂
· 1
p

}

with sensing.

Lin Dai (City University of Hong Kong) Toward a Unified Theory of Random Access January 17, 2014 29 / 74



Bi-stable Property

Otherwise, the network becomes saturated and all the nodes are busy
with non-empty queues. In this case, limt→∞ pt → pA, where pA is
the single non-zero root of

p = exp







−
n

∑K−1
i=0

p(1−p)i

qi
+ (1−p)K

qK







if {qi} is a monotonic decreasing sequence.
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Desired Stable Point pL and Undesired Stable Point pA

Desired Stable Point pL is determined by the aggregate input rate λ̂
and independent of the backoff parameters {qi}.

Undesired Stable Point pA is determined by the backoff parameters
{qi} and the number of nodes n.

Without Sensing With Sensing 

Desired 
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 !0
ˆexp ( )Aloha

Lp  ! " 0
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Summary of Node-Centric Modeling

The key to node-centric modeling lies in the proper characterization
of 1) the state transition process of each HOL packet, and 2) the
steady-state probability of successful transmission of HOL packets.

Both steady-state points are obtained as explicit functions of system
parameters, based on which a unified analysis of throughput, delay
and stability can be further performed.
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A Unified Analysis of Throughput, Delay and Stability
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Performance Evaluation of Random-access Networks

…...

…...

…...

…...

Multi-Queue-Single-Server System

Network throughput: the time fraction that an effective output is
produced.

Access delay: the time interval from the instant that the packet
becomes the HOL to its successful transmission.

Stability: the network is stable if the network throughput is equal to
the aggregate input rate.
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Questions

How to characterize the throughput and delay performance at the
bi-stable points pL and pA?

How to properly tune the backoff parameters to stabilize the network?

How to properly tune the backoff parameters to optimize the
throughput/delay performance?
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Network Throughput at the Desired Stable Point pL

The desired stable point pL is a function of the aggregate input rate
λ̂.

For the network to operate at the desired stable point pL, the offered
load ρ of each queue should not exceed 1.

Network throughput at pL:

Without Sensing: λ̂out,p=pL=λ̂=− pL ln pL.

With Sensing: λ̂out,p=pL=λ̂= −pL ln pL
(x+1)a−(1−xa)pL ln pL−xapL

.

The maximum network throughput is achieved when the aggregate
input rate

λ̂ = λ̂max =











e−1 without sensing

−W0

(

−
1

e(1+1/x)

)

xa−(1−xa)W0

(

−
1

e(1+1/x)

) with sensing.
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Network Throughput at the Undesired Stable Point pA

The undesired stable point pA is a function of the backoff parameters
{qi}.

The aggregate service rate at pA:

Without Sensing: −pA ln pA.

With Sensing: −pA ln pA
(x+1)a−(1−xa)pA ln pA−xapA

.

Network throughput at pA: λ̂out,p=pA = λ̂ if pS ≤ pA ≤ pL.
Otherwise, λ̂out,p=pA < λ̂.

The maximum network throughput is λ̂max, which is achieved when
the backoff parameters {qi} are properly adjusted such that pA = p∗A,

where p∗A = e−1 without sensing and p∗A = −1+x
x W0

(

− 1
e(1+1/x)

)

with sensing.
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Stability

The network is stable if λ̂out = λ̂.

The network is stable if it operates at the desired stable point pL.

Conditions for the network to operate at pL: 1) the offered load of
each queue ρ ≤ 1; 2) pt ≥ pS for any t.

The network may become unstable if it operates at the undesired
stable point pA.

Conditions for the network to be stable at pA: pS ≤ pA ≤ pL.

How to properly tune the backoff parameters {qi} to stabilize the network?
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Stable Region

Let qi=q0·Q(i), where the backoff function Q(i) is an arbitrary
monotonic decreasing function of i with Q(0)=1 and Q(i)<1,
i = 1, . . .,K .

Define the complete stable region of the initial transmission
probability q0 as S = {q0|λ̂out = λ̂}.
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Absolute-stable Region

Absolute-stable Region: SL = [ql , qu]. The network is stabilized at
the desired stable point pL if q0 ∈ SL.

Lower-bound ql :

Without Sensing: ql =
−pL ln pL

n

(

∑K−1
i=0

(1−pL)
i

Q(i) + (1−pL)
K

Q(K)pL

)

.

With Sensing: ql=
−pL ln pL

n−λ̂−xaλ̂(1/pL−1)

(

∑K−1
i=0

(1−pL)
i

Q(i) + (1−pL)
K

Q(K)pL

)

.

For large number of nodes n,

ql ≈
−pL ln pL

n

(

∑K−1
i=0

(1−pL)
i

Q(i) + (1−pL)
K

Q(K)pL

)

.

Upper-bound qu = − 1
n ln pS .
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Quasi-stable Region

Quasi-stable Region: SA = {q0 /∈ SL|pS ≤ pA ≤ pL}. The network is
stabilized at the undesired stable point pA if q0 ∈ SA.

SA = S
′

L

⋂

[

−pL ln pL
n

(

∑K−1
i=0

(1−pL)
i

Q(i) + (1−pL)
K

Q(K)pL

)

, −pS ln pS
n

(

∑K−1
i=0

(1−pS )
i

Q(i) + (1−pS )
K

Q(K)pS

)]

.
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Complete Stable Region

The complete stable region S = SL
⋃

SA. It is determined by:

Backoff function Q(i) and cutoff phase K .

System parameters including the aggregate input rate λ̂, the number
of nodes n, the collision-detection time x and the normalized
propagation delay a (i.e., with sensing).
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Access Delay

Let Yi denote the holding time of a HOL packet in State Ri and Di

denote the time spent from the beginning of State Ri until the service
completion, i = 0, . . . ,K .

D0 is the access delay of the HOL packet.

Let GX (z) denote the probability generating function of X .

Without Sensing: GDi
(z) = pGYi

(z) + (1− p)GDi+1
(z),

i = 0, . . . ,K − 1, and GDK
(z) = GYK

(z).

With Sensing: GDi
(z) = pzGYi

(z) + (1− p)zxaGYi
(z)GDi+1

(z),
i = 0, . . . ,K − 1, and
GDK

(z) = pzGYK
(z) + (1− p)zxaGYK

(z)GDK
(z).

The access delay performance is closely determined by which stable
point the network operates at.
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Mean Access Delay

Without Sensing: E [D0] =
∑K−1

i=0
(1−p)i

qi
+ (1−p)K

qKp
.

With Sensing: E [D0] = 1 + xa · 1−p
p + a

α

(

∑K−1
i=0

(1−p)i

qi
+ (1−p)K

qKp

)

.

At the desired stable point pL: E [D0,p=pL ] can be reduced by
increasing the transmission probabilities {qi}.

At the undesired stable point pA:
E [D0,p=pA ] =

n
λ̂out,p=pA

> n
λ̂
≥ E [D0,p=pL ] if pA > pL, or pA < pS .

E [D0,p=pA ] is minimized when the backoff parameters {qi} are
properly adjusted such that pA = p∗A.
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Example 1: p-persistent CSMA versus Aloha with

Geometric Retransmission

Cutoff phase K = 0. Assume that the holding time at State R0, Y0,
is a geometric random variable with parameter q0.

Stable region of q0:

0

=0.27

=0.23

=e
-1

a=0.01

a=0.1

a=1

=0.97

=0.87

=0.79

=0.62

CSMA with x=0

CSMA with x=1/a

Aloha

0, 0.01

max
ˆ x a
 

! !

1/ , 0.01

max
ˆ x a a
 

! !

1/ , 0.1

max
ˆ x a a
 

! !

0, 0.1

max
ˆ x a
 

! !

1/ , 1

max
ˆ x a a
 

! !

0, 1

max
ˆ x a
 

! !

max
ˆAloha 

0, 0K xS   

0, 1/K x aS   

0x

mq
 

1/x a

mq
 

0q

 ̂
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Example 1: p-persistent CSMA versus Aloha with

Geometric Retransmission

Cutoff phase K = 0. Assume that the holding time at State R0, Y0,
is a geometric random variable with parameter q0.

Minimum mean access delay:

0
0

50

100

150

200

a=1

a=0.1

=0.79=0.62=0.27=0.23 =e-1

CSMA with x=0

CSMA with x=1/a

Aloha

 ̂
1/ , 0.1

max
ˆ x a a
 

! ! 0, 0.1

max
ˆ x a
 

! !1/ , 1

max
ˆ x a a
 

! ! 0, 1

max
ˆ x a
 

! !

max
ˆAloha 

0 0min [ ]q E D

Lin Dai (City University of Hong Kong) Toward a Unified Theory of Random Access January 17, 2014 46 / 74



Example 1: p-persistent CSMA versus Aloha with

Geometric Retransmission

Cutoff phase K = 0. Assume that the holding time at State R0, Y0,
is a geometric random variable with parameter q0.

Minimum second moment of access delay:
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Remarks

Better performance (i.e., larger stable region, higher maximum
network throughput and lower minimum first and second moments of
access delay) is achieved by CSMA when the sensing time (i.e., the
normalized propagation delay a and the collision-detection time x) is
sufficiently small.

Backoff parameters should be properly set to optimize the network
performance.

For instance, to achieve the maximum network throughput, the initial
transmission probability q0 should be set as

qm =

{

1
n without sensing
1
n

(

1 +W0

(

− 1
e(1+1/x)

))

with sensing.

As the number of nodes n increases, the transmission probability of
each node should be reduced!

Lin Dai (City University of Hong Kong) Toward a Unified Theory of Random Access January 17, 2014 48 / 74



Example 2: Aloha with K -Exponential Backoff

Assume that the holding time at State Ri , Yi , is a geometric random
variable with parameter qi . qi = qi , i = 0, · · · ,K . K = 0, · · · ,∞.

Stable region of q:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

 ̂

q

1

max
ˆ e !

"

ExpS

16 ExpS  

8 ExpS  

4 ExpS  

2 ExpS  GeoS

8K  

16K  

K  !

1K  

2K  

4K  

Lin Dai (City University of Hong Kong) Toward a Unified Theory of Random Access January 17, 2014 49 / 74



Example 2: Aloha with K -Exponential Backoff

Assume that the holding time at State Ri , Yi , is a geometric random
variable with parameter qi . qi = qi , i = 0, · · · ,K . K = 0, · · · ,∞.

Access delay with q = qm at the undesired stable point pA:
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Remarks

As the cutoff phase K increases:

HOL packets have more room to reduce their transmission
probabilities to alleviate the contention → the network has a better
capability of remaining stable.

The difference of transmission probability between a fresh HOL
packet and a deeply backlogged one is enlarged → a larger second
moment of access delay (delay jitter) at the undesired stable point.

Proper backoff design is required to reach a balance between stability and
delay performance.
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Summary of Unified Analysis of Throughput, Delay and

Stability

The maximum network throughput is independent of backoff
parameters and solely determined by the sensing capability of nodes.

To achieve the maximum network throughput, nevertheless, the
backoff parameters should be properly selected.

Both delay and stability performance crucially depend on the backoff
design.
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Conclusion

Three key elements for random-access protocol design: when to start
a transmission, when to end a transmission, and how to resolve
collisions.

A unified analysis of throughput, delay and stability for Aloha and
CSMA is presented.

The analysis sheds important light on the practical network design
and control, and serves as a crucial step toward a unified theory of
random access.
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Application to IEEE 802.11 DCF Networks

Lin Dai (City University of Hong Kong) Toward a Unified Theory of Random Access January 17, 2014 54 / 74



References

L. Dai and X. Sun, “A unified analysis of IEEE 802.11 DCF networks: stability,

throughput and delay,” IEEE Trans. Mobile Computing, vol. 12, no. 8, pp.

1558–1572, Aug. 2013.

Lin Dai (City University of Hong Kong) Toward a Unified Theory of Random Access January 17, 2014 55 / 74



MAC in IEEE 802.11: Distributed Coordination Function

IEEE 802.11 Distributed Coordination Function (DCF) [1]

Carrier Sense Multiple Access (CSMA) with Binary Exponential
Backoff (BEB).

Two access mechanisms: basic access and
request-to-send/clear-to-send (RTS/CTS) access.

[1] IEEE Std. 802.11-2007, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,
June 2007.
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Operation of DCF: Basic Access

packet transmissionDIFS ACKSIFS

busy channelDIFS DIFS

5 4 3 3 2 1 0

DIFS

3 2 1 0

DIFS

DIFS

9 8 7

7 6 5

packet transmission

packet transmission

node A

node B

If a node has a packet to transmit:

Sense the channel before the transmission.

Transmit if the node senses the channel idle.

Backoff if the node senses the channel busy.

Wait until the channel is idle for a duration of DIFS.
Choose a random backoff value from {0, ...,Wi − 1}.
Count down when idle, freeze when busy.
Transmit when the counter reaches zero.
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Operation of DCF: RTS/CTS Access

DIFS

DIFS

5 4 3

DIFS

DIFS

RTS SIFS CTS packet transmission ACKSIFS

3 2 1 0

SIFS

busy channel

3 2 1 0

RTS

RTS

DIFS

DIFS

9 8 7

7 6 5

node A

node B

RTS/CTS access mechanism is firstly introduced to deal with the
hidden-terminal problem.

If a node has a packet to transmit, it sends an RTS frame to the
destination first to indicate the transmission attempt.

When the destination receives the RTS frame, it broadcasts a CTS
frame to permit the transmission.

The packet transmission starts after the successful exchange of the
RTS and CTS frames.
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Operation of DCF: Backoff Scheme

A sequence of non-decreasing backoff window sizes
{W0,W1,W2,W3, ...,Wi , ...}. i is the number of collisions the node
has experienced.

.

.

.

Binary Exponential Backoff

Backoff window size is doubled after every
collision.

W : initial backoff window size.

K : the maximum backoff stage (cutoff
phase).

Wi =

{

W · 2min{i ,K} if i-th collision
W if success
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Modeling of IEEE 802.11 DCF Networks

.

.

.

State characterization of Head-of-Line (HOL) packet

R0 R1 RK…...

1
1
1-pt

pt
T

F0 F1

1 1

RK-1
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1
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State Characterization of HOL Packets: State T

State T: The HOL packet makes a successful transmission.

Mean holding time τT at State T depends on the access mechanism.

Basic Access:

Packet Payload ACKSIFS DIFSMACPHY

τBasicT =
PHY+MAC+Payload+SIFS+ACK+DIFS

slot time

RTS/CTS Access:

DIFSRTS SIFS CTS ACKSIFSSIFS Packet PayloadMACPHY

τRTST =
RTS+SIFS+CTS+SIFS+PHY+MAC+Payload+SIFS+ACK+DIFS

slot time
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State Characterization of HOL Packets: State Fi

State Fi : The HOL packet experiences a collision.

Mean holding time τF at State Fi depends on the access mechanism.

Basic Access:

Packet PayloadMACPHY DIFS

τBasicF =
PHY+MAC+Payload+DIFS

slot time

RTS/CTS Access:

RTS DIFS

τRTSF =
RTS+DIFS

slot time
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State Characterization of HOL Packets: State Ri

State Ri : The HOL packet waits to request a transmission.

Mean holding time τRi
at State Ri depends on the backoff window

size Wi .

B1 B2B0
…... B

1iW  

1 t !

1
t

iW
 ! t t t t 

1 t ! 1 t ! 1 t !

1
t

iW
 !1

t

iW
 !1

t

iW
 !

τRi
= 1

2α · (1+Wi ), where α = limt→∞ αt is the limiting probability of
sensing the channel idle, which is given by α = 1

1+τF−τFp−(τT−τF )p ln p .
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Steady-state Operating Points

Desired stable point pL

pL=exp

{

W0

(

−
λ̂(1 + τF )/τT

1− (1− τF /τT )λ̂
· exp

{

−
λ̂τF/τT

1−(1−τF/τT )λ̂

})

+
λ̂τF/τT

1−(1−τF /τT )λ̂

}

.

pL is determined by the aggregate input rate λ̂, and the holding time in
successful transmission and collision states, τT and τF .

Undesired stable point pA
When the network becomes saturated, it shifts to the undesired stable
point pA, which is the root of the following fixed-point equation:

p = exp







−
2n

W
(

p
2p−1 +

(

1− p
2p−1

)

(2(1−p))K
)







.

pA is determined by the network size n and the backoff parameters, i.e.,
initial backoff window size W and the cutoff phase K .

W0(.) is the principal branch of the Lambert W function.
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Maximum Network Throughput

The maximum throughput λ̂max of IEEE 802.11 DCF networks is given by

λ̂max =
−W0

(

− 1
e(1+1/τF )

)

τF/τT − (1− τF/τT )W0

(

− 1
e(1+1/τF )

) .

λ̂max is determined by the holding time of HOL packets in the
successful transmission and collision states, τT and τF .

λ̂max varies under different access mechanisms.
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Maximum Network Throughput: Basic Access vs

RTS/CTS Access

Table : System Parameter Setting in
the 802.11n standard

Packet payload 4096*8 bits
MAC header 288 bits
PHY header 136 bits

ACK 248 bits
RTS 288 bits
CTS 240 bits

Channel Bit Rate 54 Mbps
Slot Time 9µs

SIFS 16µs
DIFS 34µs

Basic Access

τBasicT = 74.4 time slots and
τBasicF = 72.1 time slots.

λ̂Basic
max = 0.85.

RTS/CTS Access

τRTST = 78.1 time slots and τRTSF = 4.4
time slots.

λ̂RTS
max = 0.94.
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Maximum Network Throughput: Basic Access vs

RTS/CTS Access

Other often-used definitions of network throughput:

The fraction of time that the payload is transmitted:

λ̂max ·
Payload

τT
=

{

0.77 Basic Access

0.81 RTS/CTS Access.

The number of bits that are successfully transmitted in a second:

λ̂max ·
Payload

τT
·Channel Bit Rate =

{

41.6 Mbps Basic Access

43.8 Mbps RTS/CTS Access.
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Optimal Initial Backoff Window Size to Achieve λ̂max

Wm = n ·
−4(1+τF )

τF
W0

(

− 1
e(1+1/τF )

)

− 2

1+τF
τF

W0

(

− 1
e(1+1/τF )

)

ln
(

−1+τF
τF

W0

(

− 1
e(1+1/τF )

))

To achieve the maximum network throughput λ̂max, the initial backoff
window size should be linearly increased with the network size n.

The increasing rate is closely dependent on the holding time in
collision state τF .

Basic access (τBasicF = 72.1 time slots): Wm = 10.6n.
RTS/CTS access (τRTSF = 4.4 time slots): Wm = 1.3n.
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Mean Access Delay

At the desired stable point pL ≈ 1

E [D0,p=pL ] = τT +
1 +W

2
.

At the undesired stable point pA

E [D0,p=pA ]=

(

τT+τF
1−pA

pA
+(1+τF (1−pA)− (1−τF ) pA ln pA)

·

(

1

2pA
+
W

2

(

1

2pA − 1
+

(

1

pA
−

1

2pA − 1

)

(2(1−pA))
K

)))

.

E [D0,p=pA ] is inversely proportional to the network throughput.

minW E [D0,p=pA ]=
n

λ̂max
, which is achieved when W = Wm.
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Second Moment of Access Delay

At the undesired stable point pA

E [D2,K=∞
0,p=pA

] = ∞ when W ≤ 4n
3 ln 4

3

≈ 4.63n.
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Capture phenomenon: Some node
captures the channel and produces a
continuous stream of packets, while
others have to wait for a long time.

Poor queueing delay performance
Short-term unfairness
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Summary of IEEE 802.11 DCF Networks

The maximum network throughput is solely determined by the holding
time of HOL packets in the successful transmission and collision
states, τT and τF , which varies with the access mechanism, i.e., basic
access or RTS/CTS access.

To achieve the maximum network throughput, the initial backoff
window size W should be linearly increased with the network size n.

With BEB, the second moment of access delay may become infinite if
a small initial backoff window size is chosen in saturated conditions,
causing poor queueing performance and serious short-term unfairness.
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What can be done next?

Backoff design: In general, the backoff scheme can be characterized
by a sequence of backoff window sizes {Wi}. What is the ”best”
backoff scheme? [1]

From homogeneous DCF to heterogeneous DCF: How to model the
network if nodes in different groups have distinct input rates and
backoff parameters? [2]

From DCF to EDCA: Given the throughput differentiation
requirement, how to properly tune the backoff parameters to optimize
the network throughput? [3]
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The End
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